首页> 外文OA文献 >Relating Cascaded Random Forests to Deep Convolutional Neural Networks for Semantic Segmentation
【2h】

Relating Cascaded Random Forests to Deep Convolutional Neural Networks for Semantic Segmentation

机译:将级联随机森林与深度卷积神经网络联系起来   用于语义分段

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the task of pixel-wise semantic segmentation given a small set oflabeled training images. Among two of the most popular techniques to addressthis task are Random Forests (RF) and Neural Networks (NN). The maincontribution of this work is to explore the relationship between two specialforms of these techniques: stacked RFs and deep Convolutional Neural Networks(CNN). We show that there exists a mapping from stacked RF to deep CNN, and anapproximate mapping back. This insight gives two major practical benefits:Firstly, deep CNNs can be intelligently constructed and initialized, which iscrucial when dealing with a limited amount of training data. Secondly, it canbe utilized to create a new stacked RF with improved performance. Furthermore,this mapping yields a new CNN architecture, that is well suited for pixel-wisesemantic labeling. We experimentally verify these practical benefits for twodifferent application scenarios in computer vision and biology, where thelayout of parts is important: Kinect-based body part labeling from depthimages, and somite segmentation in microscopy images of developing zebrafish.
机译:考虑到一小组标记的训练图像,我们考虑了像素级语义分割的任务。解决此任务的两种最流行的技术是随机森林(RF)和神经网络(NN)。这项工作的主要贡献是探索这些技术的两种特殊形式之间的关系:堆叠射频和深度卷积神经网络(CNN)。我们表明存在从堆叠RF到深CNN的映射,并且存在一个近似的映射。这种见解提供了两个主要的实际好处:首先,可以智能地构造和初始化深层的CNN,这在处理数量有限的训练数据时至关重要。其次,可以利用它来创建具有改进性能的新型堆叠RF。此外,这种映射产生了一种新的CNN架构,非常适合像素语义标记。我们通过实验验证了在计算机视觉和生物学中两个不同应用场景中的实际好处,其中部件的布局很重要:深度图像中基于Kinect的身体部位标签,以及斑马鱼的显微镜图像中的somite分割。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号